Clustered Environments and Randomized Genes: A Fundamental Distinction between Conventional and Genetic Epidemiology
نویسندگان
چکیده
BACKGROUND In conventional epidemiology confounding of the exposure of interest with lifestyle or socioeconomic factors, and reverse causation whereby disease status influences exposure rather than vice versa, may invalidate causal interpretations of observed associations. Conversely, genetic variants should not be related to the confounding factors that distort associations in conventional observational epidemiological studies. Furthermore, disease onset will not influence genotype. Therefore, it has been suggested that genetic variants that are known to be associated with a modifiable (nongenetic) risk factor can be used to help determine the causal effect of this modifiable risk factor on disease outcomes. This approach, mendelian randomization, is increasingly being applied within epidemiological studies. However, there is debate about the underlying premise that associations between genotypes and disease outcomes are not confounded by other risk factors. We examined the extent to which genetic variants, on the one hand, and nongenetic environmental exposures or phenotypic characteristics on the other, tend to be associated with each other, to assess the degree of confounding that would exist in conventional epidemiological studies compared with mendelian randomization studies. METHODS AND FINDINGS We estimated pairwise correlations between nongenetic baseline variables and genetic variables in a cross-sectional study comparing the number of correlations that were statistically significant at the 5%, 1%, and 0.01% level (alpha = 0.05, 0.01, and 0.0001, respectively) with the number expected by chance if all variables were in fact uncorrelated, using a two-sided binomial exact test. We demonstrate that behavioural, socioeconomic, and physiological factors are strongly interrelated, with 45% of all possible pairwise associations between 96 nongenetic characteristics (n = 4,560 correlations) being significant at the p < 0.01 level (the ratio of observed to expected significant associations was 45; p-value for difference between observed and expected < 0.000001). Similar findings were observed for other levels of significance. In contrast, genetic variants showed no greater association with each other, or with the 96 behavioural, socioeconomic, and physiological factors, than would be expected by chance. CONCLUSIONS These data illustrate why observational studies have produced misleading claims regarding potentially causal factors for disease. The findings demonstrate the potential power of a methodology that utilizes genetic variants as indicators of exposure level when studying environmentally modifiable risk factors.
منابع مشابه
Rebuttal: When it comes to scientific inference, sometimes a cigar is just a cigar.
2012;379:1173. 26 Swanson JM. UK Biobank and selection bias. Lancet 2012; 380:110. 27 Davey Smith G, Lawlor DA, Harbord R et al. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med 2007;4:e352. 28 Mayer-Schonberger V, Cukier K. Big Data. London: John Murray, 2013. 29 Mills H. Analytics: turning data into dollars. Forward...
متن کاملThe Fundamental Differences between Iranian Traditional Medicine and Popular Medicine
The complete system of Iranian traditional medicine, which is distinct from conventional medicine, is one of the significant systems of traditional medicine that developed at the birthplace of human civilizations. This article presents a logical and philosophical analysis of the distinctions between Iranian traditional medicine and conventional medicine. In this analytical-descriptive review s...
متن کاملCausal models in epidemiology: past inheritance and genetic future
The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying t...
متن کاملFDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks
Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when und...
متن کاملP30: Are There Anxious Genes?
Anxiety comprises many clinical descriptions and phenotypes. A genetic predisposition to anxiety is undoubted; however, the nature and extent of that contribution is still unclear. Extensive genetic studies of the serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene have revealed how variation in gene expression can be correlated with anxiety phenotypes. Complete genome-wide linkage s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Medicine
دوره 4 شماره
صفحات -
تاریخ انتشار 2007